
Decision Sciences Journal of Innovative Education
Volume 3 Number 2
Fall 2005
Printed in the U.S.A.

TEACHING BRIEF

Assignment-Centric Design: Testing
the Assignments, Not the Lectures∗

Grandon Gill
Information System and Decision Sciences Department, College of Business Administration,
University of South Florida, 4202 East Fowler Avenue, CIS1040, Tampa, FL 33620-7800,
e-mail: ggill@coba.usf.edu

One of the principal practical challenges faced by programming instructors, par-
ticularly in introductory courses, is the diversity of student backgrounds (Roberts,
2000). The problem is particularly acute in Management Information Systems
(MIS) courses, where the level of interest in learning to program is also highly
variable because many MIS graduates pursue careers where programming is not
a required job activity. These concerns are not hypothetical. In an Introduction to
Programming in C++ course I taught as part of an undergraduate MIS major, 2003
survey data gathered from 116 students yielded the following profile:

� Fifty-two percent had previously taken at least one programming course
(8% in middle school, 17% in high school, 24% in community college,
20% at the university level in non-business colleges, and 24% at the uni-
versity level in a college of business). Twenty-seven percent had taken 2
or more previous courses. The remaining 48% had never taken a program-
ming course.

� Thirty percent viewed programming as a somewhat attractive or very at-
tractive career, while 27% rated it as very unattractive. Fourteen percent
thought it pretty likely or very likely they would be programmers, 34%
thought it very unlikely.

To compound the challenge of teaching the class, the course was normally taken in
the first or second semester of the student’s junior year, because the MIS concen-
tration was part of a 2-year upper division business degree. Between 60 and 70%
of all students entering that program had earned a 2-year associates degree at one
of many surrounding community colleges, meaning even the same course numbers
did not imply uniform preparation.

Presented with such diversity, it seemed inconceivable that a traditional pro-
gramming course design (e.g., lectures, projects, exams) could adequately meet
the needs of all participants—a supposition confirmed by numerous attempts.
For this reason, a new design—the assignment-centric approach—was developed.

∗Course materials and further information are available from the author (ggill@coba.usf.edu) and are
also compiled in the instructor’s manual for: Gill, T. G. 2005). Introduction to Programming Using Visual
C++.NET . Hoboken, NJ: Wiley.

339

340 Teaching Brief

Figure 1: Course requirements (taken from Summer 2004 syllabus).

Description

Percent

Exercise 1:
Compiler Exercises

Compiler installation and simple compiles (Hello, World! and
simple multi-file project)

5%

Conversions between decimal, hex and binary. Twos complement
representation. Simple bitwise logical operations. Credit for
assignment will be dependent on the results of an online exam
conducted in the lab.

10%

Exercise 3:
Logic and flow-
charting

Creating flow charts for simple processes. Converting code to
flow charts. Converting flow charts to code. Credit for assignment
will be dependent on the results of an oral exam.

20%

Exercise 4:
Debugging & Pointer
Arithmetic

Taking a program with a variety of compiler, linker and runtime
errors and finding/removing the bugs. Using a memory grid to
locate items in memory. Credit for assignment will be dependent
on the results of an online exam conducted in the lab.

15%

Exercise 5:
Function exercises

Creating a series of functions that perform simple string tasks.
Credit for assignment will be dependent on the results of an oral
exam.

25%

Exercise 6:
Structured CGI
Application

Creating web-based application that takes input from a web form
and returns it to a browser. Credit for assignment will be
dependent on the results of an oral exam.

15%

Exercise 7:
OOP CGI
Application

Rewriting web-based CGI application using C++ classes. Credit
for assignment will be dependent on the results of an oral exam.

10%

Exercise 2:
Numbering Systems

Requirement

Using this approach, traditional midterms and examinations were eliminated, leav-
ing only assignments in place. This new approach did not eliminate testing; it did,
however, drastically change its focus, as shall now be described.

ASSIGNMENT-CENTRIC APPROACH

The principles of an assignment-centric course were simple, and were explicitly
stated to all students on their first day of class:

� Completion of course assignments, in and of itself, meets all course re-
quirements.

� The primary role of lectures and outside reading is to help students com-
plete assignments.

� All testing is directed toward validating that students properly complete
their assignments.

� The central focus of the course design process is the creation of appropriate
assignments.

At the time these statements were made, students were also given all seven
course assignments (Figure 1) and the final course curve with recommended due
dates (Figure 2). There was no penalty for not handing an assignment in—only the
loss of points that could have been awarded.

The spread of the grade curve should also be noted. It was specifically de-
signed so that completion of the minimum number of assignments required to earn a
C (the minimum acceptable grade for MIS majors) provided adequate background

Gill 341

Figure 2: Course curve and deadlines (from Summer 2004 syllabus).

Numeric
Grade
Range

Letter
Grade

80-100 A
60-79+ B
40-59+ C
20-39+ D

<20 F

You should plan on completing the assignment by
the following date if your grade target is:

Assignment Last Day to
Submit

C (40-59) B (60-79) A (80-100)
Assignment 1 9 July 2004 24 May 2004 24 May 2004 17 May 2004
Assignment 2 9 July 2004 31 May 2004 24 May 2004 21 May 2004
Assignment 3 9 July 2004 25 June 2004 11 June 2004 7 June 2004
Assignment 4 9 July 2004 5 July 2004 21 June 2004 18 June 2004
Assignment 5 9 July 2004 N/A 7 July 2004 2 July 2004
Assignment 6 12 July 2004 N/A N/A 9 July 2004
Assignment 7* 12 July 2004 N/A N/A 12 July 2004*
*An A in the course is possible without completing Assignment 7, although completing it will put you
way ahead of the game in the OOP course that follows (either in Java or C++)

for subsequent courses in the major. Completing the requirements of an A grade, in
contrast, implied a level of coverage far beyond what would normally be expected
in an introductory programming course.

To support the assignment-centric approach, a number of changes to tra-
ditional course approaches were required. First, content needed to be provided
in a manner flexible enough to support the wide range of paces at which stu-
dents progressed. Multimedia versions of all lectures were therefore placed online,
available for any-time/any-place delivery. Second, lab sessions needed to be ori-
ented specifically toward assignment completion rather than teaching “general”
principles. Otherwise, no students would show up. Third, technical support for
assignment questions needed to be provided 7 days a week (because many stu-
dents were employed and weekends were therefore “prime time” for completing
assignments). This was accomplished primarily through the use of the school’s
Blackboard course management system (Figure 3). Finally, and most critically,
some mechanism for validating individual assignment performance was required.

VALIDATION EXAMS

The validation approach was one of the most unique aspects of the course design.
Each time a student completed an assignment, he or she had to pass an exam
specifically designed to ensure that the grade granted was a reasonable assessment
of the student’s knowledge. Some characteristics common to all validations were
as follows:

� Until the validation of an assignment was completed, no grade on the
assignment was entered. It was as if the assignment had never been turned
in.

342 Teaching Brief

Figure 3: Assignment discussion groups.

� The intensity of the validation varied according to the performance on
the assignment. Thus, a 95% score on an assignment meant a far tougher
validation exam than a 60%.

� There was no set limit on the number of attempts a student could make in
order to validate an assignment—other than the duration of the term.

The technique for validating each assignment varied according to the con-
tent. Two of the assignments were validated by online exams given in classroom
labs, proctored by teaching assistants (TAs). These exams involved conceptual
topics, and were generated using software developed by the instructor. That same
software was also used to generate a practice exam test bank (that students could
access online) and substantial portions of the assignments themselves. Using a
common source to generate assignments, practice exams and actual exams served
to guarantee that the exam performance would be a reliable measure of assignment
understanding.

For each of the most heavily weighted assignments—the four major program-
ming assignments—validation was accomplished using an individual oral exam
with the instructor or a TA. A student would bring a copy of his or her completed
and graded code to the exam. The student was then asked specific questions about
the code, such as “What does this line do?” or “What would happen if we took
this statement out?.” Considered “fair game” in an oral exam was any question that
related directly to the code that the student has handed in. Questions testing more
general understanding, such as a topic discussed in a previous week’s lecture, were

Gill 343

out of bounds. Similarly, questions could only be asked on the parts of an assign-
ment that were completed and graded. If a “C” was the student’s ultimate goal,
parts of early assignments might be omitted (to avoid difficult exam questions) and
later assignments could be ignored.

OUTCOMES

The move to an entirely assignment-centric design was not instantaneous. Rather
the technique evolved over a 3-year period. First, oral exams were conducted on
the last two assignments—which could then be substituted for the final. In time,
less than 10% of the class was taking the final, and the process was instituted for
earlier assignments. Then attendance of the midterm began to shrink, as students
opted for all-assignment options. Eventually, final and midterm exams were both
dropped. This move precipitated the development of online validation exams for the
two “concept” assignments. Throughout its evolution, course design was demand-
driven; a more conventional path through the class remained available to students
until there was an overwhelming consensus in favor of the pure assignment-centric
approach.

There are a number of indicators of the success of the approach. During its
evolution, the amount of “available” course content was increased by roughly 30%
(consistent with the goal of challenging the top students). Also, an extensive ques-
tionnaire was developed and administered to every section starting in spring 2003.
Participation was voluntary, but provided extra credit and 60–70% of students filled
it in. A number of results are listed in Table 1. Three outcomes were particularly
indicative of the assignment-centric approach accomplishing its goals: (i) students
reported that they felt the validation exams were fair, despite the fact that when
content was expanded the average course GPA awarded dropped to about .5 points
below the departmental average—reflecting the increased difficulty of getting a B
or an A, (ii) students did not want the course to rely more heavily on tests, and
(iii) students reported spending far more time on the course than they spent on
other department, college, or university courses—evidence that lower work load
was definitely not motivating their preference for the assignment-centric design.
While these self-reported time estimates are unlikely to be accurate, it should be
noted that they have moved consistently with course changes, rising both as con-
tent was added and in summer terms—when the same body of material must be
covered in 10 weeks versus the normal 16. The time estimates also correlated with
an objective measure, Blackboard discussion board “hits” (.268, p < .05).

With respect to diversity of backgrounds, not a single significant difference
was found between the groups with and without programming experience for 16
different measures of course satisfaction—as well as the other Table 1 measures
(right column). In other words, the approach presented in this brief was able to
accommodate diverse backgrounds and motivate unusually high time-on-task levels
while being perceived as fair.

GENERALIZABILITY

In closing this brief, it is worth considering the domain of subject matter for
which assignment-centric design would be most effective. Some speculation is

344 Teaching Brief

Table 1: Results of course surveys for 2003 (116 total responses).

No to Yes to
Scale Mean Previous Previous Sig.

Item Code (count) Course Course Diff?

The online validation exam for
Assignment 2 provided a fair
assessment of my knowledge at the
time

A 4.4 (33) 4.4 (16) 4.4 (16) No

The oral exam on Assignment 3
provided a fair assessment of my
knowledge at the time

A 4.4 (110) 4.3 (53) 4.4 (57) No

The online validation exam for
Assignment 4 provided a fair
assessment of my knowledge at the
time

A 4.2 (33) 4.2 (19) 4.3 (14) No

The oral exam on Assignment 5
provided a fair assessment of my
knowledge at the time

A 4.1 (92) 4.1 (44) 4.1 (48) No

The oral exam on Assignment 6 (& 7)
provided a fair assessment of my
knowledge at the time

A 4.0 (62) 3.9 (30) 4.0 (32) No

Time per week spent on the class T 17.3 (110) 16.2 (55) 18.3 (55) No
Time spent per week on other MIS

classes
T 7.8 (105) 7.4 (49) 8.1 (56) No

Time spent per week on other business
classes

T 5.4 (106) 5.7 (55) 5.0 (51) No

Time spend per week on other classes in
the university, outside the College of
Business

T 4.2 (89) 4.3 (46) 4.1 (43) No

Satisfaction with number of assignments S 3.6 (112) 3.6 (53) 3.5 (59) No
Satisfaction with type of assignments S 3.4 (112) 3.3 (53) 3.4 (59) No
The course should put greater emphasis

on tests and less on assignments
A 1.9 (112) 2.0 (54) 1.8 (58) No

Overall rating of the instructor∗ E 3.98 (88) 3.93 (44) 4.02 (44) No
Scale A:
1—Strongly disagree
2—Mildly disagree
3—Neutral
4—Mildly Agree
5—Strongly Agree

Scale T:
Estimated hours per week

Scale S:
1—Not at all satisfied (or very dissatisfied)
2—Somewhat dissatisfied
3—Neutral
4—Somewhat satisfied
5—Very satisfied

Scale E:
1 (Poor) to 5 (Excellent)

∗Taken from university’s course evaluation forms for non-summer sections. Typical results
for technical ISM courses are approximately 4.0, but vary considerably.

Gill 345

Table 2: Characteristics of assignment-centric domains.

Characteristic Explanation Good Fit Weak Fit

Depth of
understanding is
preferable to
shallower
understanding
of more
material.

The assignment-centric
approach implies not all
students will attempt all
assignments, meaning not all
assignments can be
“critical.”

Areas where skill
acquisition is
cumulative.

Survey courses.

Emphasis on
understanding
complex
problems or
skill acquisition
rather than
factual content.

Understanding can be readily
assessed during validation
exams—especially since
being able to explain one
part of a complex problem
nearly always requires
demonstrating understanding
of related parts. Acquired
skills, in turn, can usually be
demonstrated fairly quickly.
Factual recall, on the other
hand, would require a much
longer time to spot-check
during validation, since facts
are often learned
independently. Furthermore,
such recall-based exams
break the tight linkage
between assignment and
validation that is part of the
“contract” with the student.

Quantitative
methods
courses.

Course that
traditionally
rely heavily on
memorization.

Projects can be
defined whose
creation or
analysis
requires most or
all of the
skills/knowledge
the course is
designed to
impart.

In an assignment-centric
approach, all use of books,
materials and lectures is
essentially demand-driven—
meaning students will only
attend to the content if they
need it to complete the
assignments.

Areas where
objective
analytical
techniques are
being taught
and problems
requiring these
techniques can
be readily
defined.

Areas where
problems tend
to be highly
subjective,
turning
validation
exams into
debates.

Situations where
student
backgrounds,
abilities and/or
interest levels
tend to be
highly variable.

The assignment-centric
approach, by virtue of being
self-paced, effectively
provides separate paths for
weak-background/low-
interest students and those
students likely to be highly
motivated or familiar with
the subject matter.

Areas likely to
be a career
option for
some students
but not for
others (e.g.,
programming
for MIS
majors).

Areas where a
course is a
prerequisite
for other
required
courses that
expect
uniform
preparation.

346 Teaching Brief

involved here because I have only observed two situations where it was used: in
teaching programming and in nuclear submarine training (Gill, 2005). Common
threads from the two contexts are identified in Table 2. To summarize, the approach
seems best suited for domains where: (1) students come in with a broad range of
goals and experience, (2) the objective is to teach students specific techniques or
skills, and (3) projects can be defined that require the use of most or all of the
techniques be taught. The approach seems least applicable to domains with highly
subjective content, where the course objective is to survey all facts in the domain
or where subsequent courses presume familiarity with all course content. It should
be noted, however, that the last of these sources of poor fit can, to some extent, be
mitigated where the follow-on courses are also taught in assignment-centric fashion
to compensate for non-uniform preparation (as is the case with an assignment-
centric object-oriented course that I teach to students who have completed the
introductory course). [Received: April 2004. Accepted: July 2004.]

REFERENCES

Gill, T. G. (2005). Teaching C++ submarine style. IEEE Transactions on
Education, 48(1), 150–156.

Roberts, E. (2000). Strategies for encouraging individual achievement in Introduc-
tory computer science courses. SIGCSE’ 00, March, 295–299.

T. Grandon Gill is an Associate Professor at the University of South Florida. He
received his MBA and DBA from Harvard Business School. He has numerous
published research and teaching case studies, as well as other education material.
His research interests are currently focused on distance learning, organizational
learning, and MIS education. His publication include articles in MIS Quarterly,
IRMJ, Data Base, Accounting, Management and Information Technologies, and
Education and Information Technologies.

