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Abstract 
This paper introduces a six paper series that examines the manner in which complexity impacts 
the informing process. Two of these papers specifically consider how the objective complexity of 
the domain being studied changes the nature of the solution—with domains consisting of many 
interacting elements and changing criteria for success tending to produce highly rugged fitness 
landscapes that violate the normal assumptions of decomposability that we make in our research 
and incorporate into our theories. A third paper considers how the concept of utility impacts in-
forming and is impacted by complexity. Another pair of papers examines, first, how the structure 
of a client’s mental models—referred to as structural complexity—changes with repetitive task 
performance and, then, how various cognitive filters work in concert with this structure during the 
informing process. The final paper specifically considers client-to-client informing processes, 
using the diffusion literature to argue that they are indispensible to complex informing and further 
mapping different models to different levels of informing complexity. Collectively, it is hoped 
that these papers will spur further research into the processes that enable complex informing. 

Keywords: research methods, rigor, relevance, rugged fitness landscapes, adaptation, utility, 
learning, informing sciences, complexity, bias, decomposability. 

Introduction 
If every message that is passed from sender to client were received and understood correctly and 
unambiguously, there would be no need for the informing sciences. However, informing is com-
plex and complexity interjects itself into many informing situations. Where it does, it can increase 
the challenges of effective informing in many ways. How do we present our message so the client 
accepts it? Does the client understand the message as we intended it to be understood? Impor-
tantly, how do we ensure that our messages, once understood by the client, will have the impact 
that we desire? How do we create messages that inform multiple clients? Can we get clients to 
pass our messages among themselves? All these questions become more difficult when complex-
ity is present. 

Let us consider a model for the inform-
ing process that builds on the Shannon 
and Weaver Model of Communications 
(1949) and Wilson's (1981) model of 
information-seeking behavior, shown as 
Figure 1.  

It is useful to relate to Figure 1 as we 
introduce the following papers.  These 
papers all relate to different facets of 
task complexity within a given context. 
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Despite its potential importance to informing processes, the topic of complexity has not hereto-
fore been systematically investigated within the informing sciences literature. The series of six 
papers being introduced here represents our attempt to introduce some key complexity-related 
concepts and to promote further research in the area of complex informing. Because, as it turns 
out, complexity—in its various forms—can exert a sizeable impact on informing. For example, 
our research suggests the following: 

• The level of complexity associated with an informing system can dramatically alter the 
forms of research that are most appropriate for investigating the system’s behavior and 
the types of results we can expect to find (Gill, 2008b). 

• That same complexity can cause traditional quantitative techniques to yield misleading 
results about the systems we are investigating, making us overconfident in the relation-
ships that we discover and suggesting the presence of relationships that are pure illusions 
(Gill & Sincich, 2008).  

• Changing levels of complexity in a client’s mental models can exert a strong influence on 
how clients value information and in the degree to which inconsistencies in client deci-
sion-making are likely to be experienced (Gill, 2008a). 

• Complexity changes that occur as we acquire expertise can dramatically impact how cli-
ents represent and share information, leading to substantial challenges when experts with 
one type of expertise attempt to share their knowledge with experts having alternative 
types of expertise (Gill, 2008e) 

• The complexity of information being shared changes the nature of the barriers to inform-
ing that we encounter when a single client is being informed (Gill, 2008d). 

• Where complex information is to be shared between two dissimilar communities, client-
to-client informing processes are likely to be far more critical to the success of the proc-
ess than sender-to-client processes (Gill, 2008c). 

 Many of these findings presented are not original. Rather, they are distilled from a broad range of 
research fields that include economics, evolutionary biology, cognitive science, decision theory, 
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Figure 1. The Informing Science Model builds on the Shannon and Weaver (1949) and Wilson (1981) 

models.  The emphasis in this model is on the context of the client, the informer,  
and the transformation of message between the two. 
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psychology, sociology, and management. The hoped-for contribution of this series of papers, 
then, is to bring research into complex informing processes to the informing sciences mainstream. 

What is complexity? Unfortunately, the concept of complexity is far from simple. As a result, 
before we consider how the papers tie together, we need to clarify what we mean by complexity. 

Introduction to Task Complexity 
The initial inspiration for the series of articles being presented is a 2006 article in Informing Sci-
ence titled “Task Complexity and Informing Science: A Synthesis” (Gill & Hicks, 2006). Based 
upon their analysis of several hundred articles that either defined or applied the task complexity 
construct, the authors concluded that there was no possible consensus definition. Instead, there 
were five general classes of complexity definitions, each of which could be useful under certain 
circumstances: experienced, information processing, problem space, structure, and objective. 
These classes are summarized in Table 1. 

Of the five classes, the first two define task complexity in terms of its consequences. They prove 
not to be particularly useful for our present purposes. The remaining three, however, can each 
contribute to informing in their own way. Problem space complexity constructs, for example, cha-
racterize the nature of the task performer’s pre-existing knowledge and mental models. For ex-
ample, if the task performer were a computer program, problem space complexity metrics might 
include the number of lines of code, the number of paths through that code, the amount of mem-
ory required to hold the code, the nature of the variables used to hold information during process-
ing, the initial values of these variables, and so forth. Structural complexity, on the other hand, 
takes a more qualitative look at the problem space and attempts to characterize the types of know-
ledge to be used in task performance. For example, does the task performer apply task-specific 
rules or rely upon more general common sense or analogy? Is there a clear task goal or is task 
performance guided by a more general collection of vague goals? Is performance automatic, or 
does the task performer need to make conscious decisions during each step in the task? 

Table 1: Task Complexity Classes (summarized from Gill & Hicks, 2006) 
Name Form of Definition Description/Example 

Experienced Task Complexity  Psychological state If an individual perceives a task to be 
difficult, then the task is complex 

Information 
Processing 

Task Complexity  Information Processing 
Activity 

If a task a task produces high informa-
tion processing, then the task is com-
plex 

Problem Space Problem Space Attributes  Task Complexity 

Example: A task’s complexity is de-
fined by the minimum size of the 
computer program required to perform 
the task. 

Structure Lack of Structure  Task Complexity Example: The more routine a task, the 
less complex it is 

Objective Task Characteristics  Task Complexity 

Example: A task’s complexity is de-
termined by the number of task ele-
ments, the degree of interrelationship 
between the elements and the degree 
to which task objectives are changing 
(Wood, 1986). 

 

Objective complexity, which proposes task complexity to be a strict function of task characteris-
tics, seems—intuitively at least—as if it might be the most useful class of the bunch. Its particular 
strength is that it does not depend upon knowing the mental models of the task performer. Also, it 
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is intended to predict task complexity, unlike the first two classes, which merely report its pres-
ence. 

However, it has never been very clear what objective complexity was good for. The problem be-
comes particularly acute when task performers are not told how to perform a task. Countless ex-
periments, for example, find that as a task becomes more objectively complex, performers start 
choosing ways to simplify how they perform the task. That breaks down any desired relationship 
between objective complexity and experienced or information processing measures. Moreover, 
the task may not specify what tools are to be used in performing it. Imagine how the nature of 
what is experienced by the task performer can change depending upon the presence or absence of 
a computer. It also turns out that it is very hard to measure the level of objective complexity, al-
though attempts to devise formulas have been made (e.g., Wood, 1986). 

For these reasons, objective complexity never gained much traction as a construct. Yet, it turns 
out that the objective complexity construct proposed by Wood (1986) is very good for predicting 
the ruggedness of a fitness landscape. The importance of that is the subject of the first paper in 
the series. 

Reflections on  
Researching the Rugged Fitness Landscape 

The first paper in the series (Gill, 2008b) draws upon the concept of a rugged fitness landscape, 
pioneered by evolutionary biologist Stuart Kauffman (1993). It is based upon the concept of a 
fitness function, which is a mapping between a set of attributes and the resulting desirability or 
survivability of the associated entity (i.e., its fitness). The concept of a fitness function is widely 
distributed across many disciplines. In computer science, for example, it appears as the static eva-
luator function often encountered in game playing programs. In economics and finance, it is 
called the utility function. In the military, annual performance ratings of personnel are referred to 
as fitness reports. Kauffman’s research focused on understanding the overall behavior of such 
functions across their entire domain, referred to as their fitness landscape. What he found was 

that as the number of 
attributes and their 
interrelatedness grows, 
the landscape becomes 
increasingly more rug-
ged. What ruggedness 
means is that instead of 
having a single fitness 
peak, achievable by tun-
ing the fitness of each 
attribute independently, 
you have many local 
peaks—each of which 
depend upon specific 
combinations of attrib-
utes. 

Conceptually, it is use-
ful to think of a rugged 
landscape as being simi-
lar to rough terrain, 
such as that illustrated 

Figure 2: The rugged landscape of Bryce Canyon, Utah, USA  
(photo by Grandon Gill) 
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in Figure 2. As is the case in that illustration, attempting to reach peak fitness by continuously 
moving upwards is unlikely to get you to the highest peak—but it will get you to the nearest local 
peak in fitness. Unlike the illustration, however, a fitness landscape is not two dimensional. Ra-
ther, it has as many dimensions as the fitness function has arguments. 

The particular challenge presented by rugged landscapes is that the impact of variables upon fit-
ness is not decomposable. In Figure 2, for example, the elevation function has two arguments, the 
N-S dimension (latitude) and the E-W dimension (longitude). As should be readily evident, how-
ever, if we assume fitness to be the same as altitude, travelling north will sometimes take us up 
(to higher fitness) and sometimes take us down (to lower fitness), the same being true for travel-
ling east. Thus, the rules regarding what direction to travel so as to improve fitness depend en-
tirely upon where you are in the landscape. Or, stated another way, the more rugged the land-
scape, the more likely its behavior will be localized and not particularly generalizable. 

An example of such localized behavior presented in the paper involves the design of three 
courses, each of which was characterized as exemplary using a variety of criteria—the details of 
which are presented in the paper. What is interesting about these courses is that there is not a sin-
gle design characteristic that they share in common (See Table 2). In a decomposable landscape, 
this would suggest that none of the characteristics listed make a particularly strongly contribution 
to course fitness. While that is possible, it seems quite unlikely given the range of characteristics 
presented. In a rugged fitness landscape, on the other hand, the conclusion that we would draw 
would be that the characteristics all (or nearly all) contribute to fitness, but only in combination 
with other characteristics. For example, mandatory attendance might not make sense in combina-
tion with flexible deadlines, since classroom presentations and assignments could then easily get 
out-of-synch. 

Table 2: Cross-Course Comparison (originally from Gill & Jones, 2008) 
 Class A Class B Class C 
Classroom Lectures No Yes Minimal 
Multimedia Lectures Yes No No 
Moderated Classroom Discussions Optional No Yes 
Paired Student Problem-solving No Yes No 
Student Presentations No No Yes 
Deadline Flexibility Yes No No 
Mandatory Attendance No Yes Yes 
Examinations No Yes No 
Outside Class Projects Yes No Yes 
Level of Performance Feedback High High Low 
Grade Subjectivity Low Low High 
Student Level Undergraduate Undergraduate Graduate 
Source  Evolved Designed Designed 
Instructor Instructor A Instructor B Instructor A 
Instructor Experience with Course Subject Matter High Low High 
Evaluations (a possible indicator of fitness) Outstanding Outstanding Outstanding 
 

There are four main conclusions supported by the paper: 

1. That ruggedness in a fitness landscape fundamentally changes how we need to understand the 
underlying process behind the landscape. Decomposable landscapes lend themselves to being 
explained by attractive theory, which is to say theory that is compact, generalizable, and can 
be reproduced. Rugged landscapes, on the other hand, tend to yield ugly theory, which is to 
say large and full of qualifications, not generalizable, and hard to reproduce outside of the 
situation in which the original observation was made. 
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Figure 3: Low Hanging Fruit in Attribute Space (from Gill, 
2008e), where the shaded area indicates variables that act 

consistently across all the included task cases. 

2. That high objective complexity in a task domain produces a rugged fitness landscape that im-
pacts how we perform the task. 

3. That the typical informing system meets all the prerequisites for objective complexity—many 
attributes that can affect the fitness of the system (e.g., motivation sources, client learning 
styles, client and sender problem space characteristics, delivery system characteristics) and 
many characteristics that need to be matched with other characteristics (e.g., client informa-
tion display preferences with system knowledge presentation format) creating numerous in-
terrelationships. 

4. That our understanding of informing systems fitness is, therefore, more likely to be advanced 
by deep observations of the behavior and history of specific system instances than by quanti-
tative analysis of survey data consisting of a subset of attributes and the estimated fitness of 
many systems. 

These conclusions are quite significant in their implications for informing systems research. They 
come, however, with two potential Achilles heels: 1) if an informing system exists on such a rug-
ged landscape and quantitative methods are unlikely to yield useful results, how is it that the MIS 
field—which focuses on an overlapping subject area—so often finds statistically significant re-
sults in its own quantitative investigations (e.g., studies of the technology acceptance model), and 
2) if rugged fitness landscapes are so ubiquitous, how is it that the most widely used fitness func-
tion in the social sciences, utility, is not generally perceived to exist on a rugged, multi-peaked 
landscape.  

Understanding the how a rugged landscape influences statistical relationships is the subject of the 
second paper. How utility and the rugged fitness landscape relate is the subject of the third. 

Illusions of Significance in a Rugged Landscape 
The second paper (Gill & Sincich, 2008) addresses the question of what happens when quantita-
tive research methods, most particularly multiple linear regressions, are applied to a rugged fit-
ness landscape under the incorrect assumption that the landscape is decomposable. In a practical 

sense, it is an attempt to 
understand what happens when 
we are wrong about the 
fundamental nature of the land-
scape we are studying, and 
therefore use inappropriate tools 
to study it. 

Our prediction in performing 
the analysis was that certain 
variables would contribute de-
composably to fitness and 
would, therefore, be picked up 
readily by quantitative tools. 
These would be the “low hang-
ing fruit” of research, as shown 
in Figure 3. We expected, on the 
other hand, that variables that 
only affected fitness through 
interactions with other variables 
would be overlooked. Since 
MIS research frequently incor-
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porates fairly obvious findings into its conclusions (e.g., top management support increases the 
likelihood of system adoption, intention to use typically precedes system use, to name a just a few 
of the gems), the explanation that some variables act globally (decomposable) while some act in 
concert with other variables (based on local interactions) seemed a plausible answer for the statis-
tically significant results so often obtained by the MIS field. 

Although the analyses performed were not inconsistent with the proposed explanation, they also 
introduced an entirely new twist into the problem. The models that were employed assumed that 
entities on the rugged landscape would attempt to maximize their fitness and would, therefore, 
tend to migrate to local peaks. This is comparable to mechanisms proposed by Kauffman (1993) 
in his fitness landscape studies. It is also completely consistent with processes such as utility 
maximization that are axiomatic in fields such as economics and finance. 

What we observed was unexpected. Specifically, as soon as such migrations towards local fitness 
peaks started to occur, major errors in statistical significance estimates and coefficient estimates 
begin to surface. In fact, even in entirely random landscapes with 8 independent variables, migra-
tion to the local fitness peaks led to significant relationships—often at levels of p<0.001—being 
detected for an average of two variables. Where the underlying process being simulated was a 
mixture of decomposable and non-decomposable relationships, as it would have been in our Fig-
ure 3 model, the impact of migration was even worse. In essence, nearly all statistical tests and 
estimates began to fail in the direction of showing false significances (although, in a few cases, 
actual significances were also hidden). 

The problem that was identified was not the fault of the statistical algorithms being employed. 
Rather, it resulted from conducting certain types of analysis (multiple linear regression was used 
in the examples, but related techniques such as factor analysis, structural equation modeling, and 
even less sophisticated significance tests would also be affected) on observations that were incon-
sistent with the model we were fitting them to. In fact, if we recognized the underlying fitness 
landscape as being rugged, it probably would never have occurred to us to conduct such tests. The 
example used in the paper is that of a cookbook. Assuming we had a taste tester available, it 
would be possible to devise a regression for which the dependent variable was taste ranking (fit-
ness) for each recipe while the independent variables were dummies signifying the presence or 
absence of each ingredient in the recipe. While it would be easy to construct an regression in this 
manner, we would have little reason to do so because we intuitively understand that each recipe 
in the cookbook is, itself, likely to be on or close to a fitness peak—the result of years of experi-
mentation by the authors. Even if a particular ingredient seemed to be a contributor to fitness 
overall (e.g., the coefficient for garlic was positive and had a significant p-value), it would there-
fore be extremely unlikely that adding it to a recipe where it was absent (e.g., an angel food cake 
recipe) would enhance the taste fitness of the new recipe. 

The concern raised in the conclusion of the paper is that we have no such intuition regarding the 
non-decomposability of the contributors to fitness of informing systems. Moreover, academic 
rewards are particularly high for the development of attractive theory, which tends to depend 
upon the underlying fitness landscape being decomposable, not rugged. As a result, there is con-
siderable incentive for reviewers to ignore the possibility that the landscape they are studying is 
quite rugged. And, unfortunately, the statistical behavior of their results will not necessarily be 
treated as evidence against the assumption of decomposability. 

A Psychologically Plausible Goal-Based Utility Function 
The third paper in the series (Gill, 2008a) focuses on the economic concept of utility. It is de-
signed to act as a bridge between the first two papers—which focus on ruggedness—and the 
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fourth and fifth papers—which focus on how our mental models change with learning and in-
forming. 

Utility is the term economists use to describe the level of satisfaction that we achieve, or expect to 
achieve (expected utility), as a consequence of decisions. A utility value is therefore a subjective 
measure of the fitness of our choices, its arguments being the quantities for a specific basket of 
goods and services that we choose. As such, it has the characteristics of a typical fitness function. 

The behavior of the utility function is also fundamental to the mathematical underpinnings of 
some of the most successful disciplines in the social sciences, including both economics and fi-
nance. As such, its existence presents a challenge to the rugged fitness landscape model of the 
first paper since, for the most part, any potential ruggedness in the utility fitness landscape tends 
to be ignored by these disciplines. The question then becomes: how can these disciplines be so 
successful if the underlying function that they base their theories on behaves in a manner incon-
sistent with their axioms. 

In considering this question, the third paper makes a number of points. First, it is not so much that 
economics and the decision sciences are unaware of utility’s capacity to exist on a rugged fitness 
landscape. Rather, the mathematical intractability of that assumption interferes with theory devel-
opment and therefore tends to be assumed way. Second, there is a great deal of evidence, devel-
oped in psychological studies, that utility exhibits considerable ruggedness. Third, the question of 
motivation, particularly intrinsic motivation, is nearly absent from the utility literature, in spite of 
the fact that it is a major source of satisfaction. Fourth, utility changes as we learn—a process 
almost entirely ignored by economists—and the resulting shape of the utility fitness landscape is 
likely to change during that process as well. 

All four of these points can be illustrated with a typical framing experiment, taken directly from 
the paper. Consider the following pair of choices (adapted directly from Tversky & Kahneman, 
1988, p. 173-174): 

First choice problem: 

Assume yourself richer by $300 than you are today. You have to choose between: 

A. A sure gain of $100 
B. 50% chance to gain $200 and 50% to gain nothing 

 

Second choice problem: 

Assume yourself richer by $500 than you are today. You have to choose between: 

A. A sure loss of $100 
B. 50% chance to lose nothing, 50% to lose $200 

The actual results of this experiment were that most (72%) chose A in the first problem, while 
most (64%) chose B in the second. This presents a bit of a problem for any utility model that as-
sumes consistent choice, since—in fact—options A and B in both choice problems lead to pre-
cisely the same outcome: a $400 gain in choice A, a 50-50 distribution between $300 and $500 in 
the case of choice B. This inconsistency suggests a more rugged utility landscape exists than is 
generally assumed. Economists have been subjected to reports of similar inconsistencies for over 
25 years, and Daniel Kahneman, a psychologist who pioneered research in this area with the late 
phychologist Amos Tversky, received the 2002 Nobel Prize in Economics for his efforts. Thus, 
economists cannot claim ignorance of the phenomena; they must be assuming them away. 

How this example illustrates the relationship of utility to learning is more subtle, yet more central 
to the theme of the paper. Consider the following, however. Once you learn about framing ex-
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periments, you quickly realize that they invariably follow the same pattern. Two scenarios are 
presented with two choices for each. Although dissimilar on the surface, the two scenarios none-
theless lead to identical outcome pairs when you dig deeper. It is therefore irrational to choose 
anything but the pair of choices that lead to the same outcome for both scenarios. In other words, 
A and A or B and B are rational in our example; combinations of A and B across choices are not. 
Having learned this about framing problems, would you ever again choose irrationally when pre-
sented a framing problem? 

The paper presents a model that views utility in a fundamentally different way from the economic 
perspective. First, using the large and successful goal setting literature developed in psychology 
and management as evidence, it proposes that utility is better viewed as acting through goals than 
being a direct function of acquired goods and services. This serves to tie utility to intrinsic moti-
vation, which is fundamental to goal setting models. Second, it proposes that as we learn the na-
ture of the goals change. 

The model, which is focused on the utility associated with performing a task (thereby relating it 
to the task component of an informing system), argues that as we perform a task and learn about 
it, we move from satisfying very generic goals—hard wired into all of us by evolution—to very 
task specific goals and, finally, to the single goal of making progress towards completing the task. 
This progress is shown in Table 3, taken from the paper. 

Table 3: Utility sources for task performance (from Gill, 2008a) 
Source of Utility Description 
Task progress Intrinsic utility derives from the process of completing the task. Because the 

task has become routine, the conscious satisfaction of individual task-related 
goals is no longer required. In this stage, neoclassical models of the utility of 
information are likely to be valid.  

Task goals Intrinsic utility derives from satisfying and progressing towards a series of spe-
cific goals that are presented as part of the task. These goals may serve to direct 
activities or act as targeted levels of achievement. In this stage, task-related util-
ity is best predicted by the goal setting models so extensively documented in 
management and psychology. Inconsistencies in decision-making and biases 
will tend to lose impact in this region as goals become increasingly well estab-
lished. As the task is repeated, specific goals and tradeoffs between goals be-
come increasingly automated, ultimately leading to migration towards the task 
progress stage. 

Generic drives and 
desires 

Intrinsic utility derives from satisfying and progressing towards generic drives 
and desires that are present, to varying degrees, in all individuals. At this level, 
which is applicable mainly to highly unfamiliar and learning-oriented tasks, 
utility tends to be highly subject to framing issues and cognitive biases of the 
sort that economists and decision scientists have identified in experiments—
often inconsistent with “rational” models of behavior. As task-specific goals are 
learned, the utility migrates towards the task goals stage. 

 

Generic goals and, initially, task goals will tend to be numerous and exhibit many interactions 
with each other. As a consequence, we would expect the utility landscape to be quite rugged dur-
ing the early stages of learning. In the middle of the task goals phase, however, we start to iden-
tify and concentrate on single utility peaks. A single peak focus eliminates many of the challenges 
presented by ruggedness; therefore, at this point, we expect many of the ambiguities in utility 
should cease to be significant. By the time the task progress stage has been reached, utility de-
rives directly from observed indications of task progress. At this point, the function behaves much 
as the economic model would expect it to perform. 



Complex Informing 

 

156 
 

Evidence for the proposed model of utility is gathered from many sources, including psychology, 
cognitive science, economics, evolutionary biology, neuroscience, and computer science. The 
utility model is therefore also proposed as a case study in how a transdiscipline, such as the in-
forming sciences, can advance thought by bringing together disparate views of the same problem. 

Utility learning, however, is only one aspect of the overall learning processes that take place 
within the mind of the client. To develop a more complete view of learning and its relationship to 
informing, we need to apply the same principles to broader model of client cognition: the problem 
space. That is the focus of the fourth paper, which addresses the relationship of structural com-
plexity to informing. 

Structural Complexity and Effective Informing 
The fourth paper of the series (Gill, 2008e) considers the relationship between structural com-
plexity and informing. It does this using the model of a problem space, which extends the notion 
of utility developed in the third paper (the goal space) to the knowledge representation scheme 
used for the task (the state space) and the mechanisms available for transforming and manipula-
tion that knowledge (the operator space). In each case, the model posits four levels of structure, 
ranging from general purpose (Level 4) to highly compiled, task-specific knowledge (Level 1). 
For the goal space, this maps well to the utility model—with the Task Goals region of Table 3 
being divided into its rugged fitness regions (Level 3) and decomposable regions (Level 2). 

In structural complexity, the assumption is that the more specialized the knowledge used in per-
forming the task, the lower the structural complexity. As a consequence, many of the findings 
reviewed in the paper are drawn from the large literature involving the acquisition of expertise. 
One nearly universal finding of this literature is that with practice, the contents of our problem 
spaces move from higher to lower levels—true for the state space (chunking), the operator space 
(automization), and, as demonstrated in the third paper, for the goal space (learned utility and 
specific peak focus).  

Another way of looking at expertise involves the performance of task cases. A task case repre-
sents a specific instance of a task, which may only require a small fraction of the problem space 
required for the task in general. For example, when a patient walks into a physician’s office with 
a problem, it represents the initiation of a specific task case. The problem space of the physician, 
on the other hand, is expected to be much larger—since he or she must be able to handle many 
different task cases as part of the job. 

Using this perspective, illustrated in Figure 4 (taken from the paper), experts can be differentiated 
from non experts based upon the level of knowledge typically applied to task cases. The nature of 
the goal space, however, also exerts an important influence on the role played by task cases. As 
illustrated in Figure 5, knowledge specific to the problem space is likely to divide into to two 
forms: core knowledge that is applicable to all or most task cases and case-specific knowledge, 
applicable to a single or small number of task cases. Where the goal space exhibits a rugged fit-
ness landscape—which, from the first paper (Gill, 2008b), we anticipate under conditions of high 
objective complexity—task cases correspond to local fitness peaks and knowledge of these peaks 
will tend to dominate our problem space contents. Where objective complexity is low (small 
number of task components, largely decomposable relationships), we expect the relative amount 
of core knowledge to be much greater. 
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Figure 5: Problem Space Structural Complexity Model (from 
Gill, 2008e). The relative size of the task cases area, compared 
to core knowledge, is likely to depend heavily on objective task 

complexity. Where such complexity is low, core knowledge 
should represent the vast majority of the problem space. Where 

objective complexity is high, task case knowledge is likely to 
predominate. 

 
Figure 4: Expert vs. Novice Problem Spaces (from Gill, 2008e). For the expert, the majority of task 
cases would be expected to involve low problem space levels, with the occasional higher levels re-

quired for less familiar cases. For the novice, the situation is reversed. 

Once again, we can use the 
cookbook as an analogy. Ow-
Owing to its high objective 
complexity (many possible 
ingredients that strongly 
interact with each other in 
producing a final product), 
we’d expect that expertise in 
the cooking domain would 
tend to be dominated by 
knowledge of how to prepare 
specific recipes, rather than by 
core knowledge applicable to 
all cooking activities (e.g., 
organic chemistry). One 
natural outcome of this type 
of problem space would be a 
tendency of experts to 
specialize, thereby reducing 
the number of task cases that 
must be considered and 
increasing the relative 
quantity of core knowledge 
applicable to the subset of 
task cases chosen. In the 
cooking domain, for example, 
by choosing to become a 
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pastry chef, the expert increases the amount of knowledge that may be considered core to all task 
cases. Obviously, medicine and academia are two other examples of areas where such specializa-
tion has occurred. 

A particularly important concept emphasized by the paper is the distinction between two types of 
knowledge: episteme (theory) and phronesis (practical wisdom). This leads to a further distinction 
that is very important from an informing perspective, that of the academic-expert and the practi-
tioner-expert. The academic-expert is characterized by high levels of episteme, which exists at 
high problem space levels by virtue of the fact that the knowledge relates to tasks that the expert 
does not routinely practice. The practitioner-expert, on the other hand, has a knowledge distribu-
tion that is dominated by lower, more highly compiled, chunks. This hypothetical distinction is 
illustrated in Figure 6 (from the paper). 

 
Figure 6: Illustrative Patterns of Practitioner and Academic Knowledge Distributions (from Gill, 

2008e). The practitioner mainly utilizes knowledge that has been highly compiled, as a consequence 
of frequent practice. Such knowledge, however, is likely to be concentrated around familiar task cas-
es. The academic, in contrast, has knowledge that is mainly in symbolic, higher level forms, but that 

knowledge is likely to support a broader range of task cases. 

A central theme of the paper, then, is the types of informing barriers that these distinct knowledge 
representations present when the academic-expert attempts to communicate with the practitioner-
expert. In addition, because the goal space is a function of utility, and utility is closely related to 
motivation (Gill, 2008a), the paper proposes a three of “laws” related to informing. Specifically: 

The Law of Abandoned Expertise: Clients will resist any task-related informing activities 
that require relinquishing existing expertise in their problem space. 

The Law of Limited Visibility: In the absence of concrete negative performance feedback 
or external pressures, an individual will gradually come to view the entire goal space in 
terms of the peak that he or she has reached or is presently climbing. The phenomenon 
will be particularly pronounced in a goal space where multiple peaks exist, but only one 
provides feedback. 

The Law of Low Hanging Fruit: Within a rugged goal space, those problem space attrib-
utes that enhance or detract from goal fitness decomposably across nearly all fitness 
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peaks will tend to obscure equally important contributors to fitness that only act upon cer-
tain specific peaks. 

The implications of these laws, and the evidence for their existence, are discussed more thor-
oughly in the paper. The challenges presented by these laws, particularly the last two, grows as 
the goal space becomes more rugged. 

The structural complexity model proposed in the paper essentially acts as a bridge between prob-
lem space complexity—which is a function of the specific contents of a problem space—and ob-
jective complexity—which largely determines the shape of our goal space. In developing the 
model, however, two interesting questions emerge: 

1. In the study of utility (Gill, 2008a), it was specifically proposed that anomalies in prefer-
ence that exist at high levels of structural complexity will tend to exert a much lower im-
pact at lower levels of structural complexity. Is the same true for the problem space in 
general? 

2. Given that the obstacles that present themselves when expert-academics and expert-
practitioners attempt to inform each other, how is it that any such informing ever takes 
place?  

The first of these questions is addressed in the fifth paper, which proposes a general client-side 
informing model. The second is addressed in the final paper, which considers the role played by 
client-to-client informing in the overall informing process. 

The Single Client Resonance Model:  
Beyond Rigor and Relevance 

The fifth paper (Gill, 2008d) specifically addresses the role of informing as it relates to the cli-
ent’s mental models. It starts with the premise that a message’s impact on a client’s mental mod-
els cannot be entirely explained by the quality (rigor) of the contents of the message and its po-
tential value (relevance) to the client. Instead, a third quality, resonance—using the term intro-
duced in Gill and Bhattacherjee (2007)—is needed to explain the message’s ability to acquire the 
client’s attention and enter the client’s problem space without being distorted. 

The paper starts with a case study illustrating how rigor and relevance are insufficient to ensure 
effective informing. In reviewing the informing sciences literature on the subject, it then identi-
fies a model that captures many of the issues relating to resonance: Jamieson and Hyland’s (2006) 
filter model. That model proposes that information on its way to the client must first pass through 
as series of filters, described as:  

1) information biases,  
2) cognitive biases,  
3) risk biases, and  
4) uncertainty biases.  

Information biases reflect mechanisms that modify incoming information to align it with existing 
client preferences, usually applied at an unconscious level. Cognitive biases are employed to sim-
plify decision making so as to keep it within the limits of the client’s bounded processing re-
sources. Risk and uncertainty biases derive from client attitudes towards risk and uncertainty, re-
spectively. Because these filters, particularly the first two, can serve to block information alto-
gether, they can act as severe impediments to resonance. 

The filter model is a very useful model. Using the problem space model, however, it can be ex-
tended in two important ways. First, given the importance of motivation and other visceral factors 
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in the informing process—as discussed at length in the paper and in the goal-based utility model 
paper (Gill, 2008a) as well—any discussion of filters would need to incorporate these aspects of 
the informing task. Second, as was also discussed in the utility model, we would not expect filters 
to act uniformly on all levels of the problem space. Thus, it is possible to propose that certain fil-
ters are more likely to be applicable to certain levels of structural complexity. The resulting Sin-
gle Client Resonance Model (from the paper) is presented in Figure 7. 

The majority of the paper 
focuses on reviewing find-
ings that support the exis-
tence and specify the ex-
pected activities of the dif-
ferent types of filters. At 
the end of the paper, how-
ever, the proposed model is 
contrasted with the SUC-
CESs model of communi-
cation “stickiness” pro-
posed by Heath and Heath 
(2007). A very strong cor-
respondence is found, fur-
ther supporting the overall 
structure of the model. 

A significant difference 
between the SUCCESs 
model and the proposed 
Single Client Resonance 
Model relates to the com-
plexity of the messages 

involved. Whereas the SUCCESs model is largely built around simple messages (the first S in 
SUCCESs refers to “simple”), the Single Client Resonance Model is particularly concerned with 
complex informing situations. As such, it will tend to be most useful in situations where the send-
er has a relatively high level of knowledge regarding the client’s mental models. 

In presenting the Single Client Resonance Model, the paper specifically notes that the earlier de-
finition of resonance that had been proposed (Gill & Bhattacherjee, 2007) was actually in two 
parts: the first involving a message’s ability to impact the mental models of an individual client, 
the second involving its ability to initiate subsequent client-to-client informing. The final paper 
therefore addresses the second of these aspects of resonance. 

Resonance within the Client-to-Client System:  
Criticality, Cascades, and Tipping Points 

A long and distinguished literature on the diffusion of innovation (e.g., Rogers, 2003) finds that 
few, if any, complex innovations ever make their way into a client community without consider-
able word-of-mouth communications. We refer to these communications more generally as client-
to-client informing. It, therefore, follows that any attempt to understand the process of complex 
informing without considering client-to-client informing is likely to be of very limited practical 
value. 

Unfortunately, client-to-client informing processes have received scant attention in the informing 
sciences literature. The overriding purpose of the final paper (Gill, 2008c) is, therefore, to provide 

 
Figure 7: Single Client Resonance Model (from Gill, 2008d). In this 

model, filters are expected to exert differential effects depending 
upon the problem space level to which a message is targeted. 
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an overview of some these processes and identify some of the common and distinct characteris-
tics of each. 

Three general mechanisms of client informing are presented: 

1. Criticality: This model is based on the concept of a critical system, most commonly used 
in the context of nuclear engineering. The simplest of the three models, it could be de-
scribed as client-sender motivated communications, since it is applicable only when one 
client who possesses the information is strongly motivated to inform other clients about 
it. 

2. Information Cascade: Introduced originally in economic theory, this model is normally 
presented in terms of clients making a choice between two options for which information 
about prior client adoptions is available. Although often applied to products (e.g., VCR 
formats, movies), it can also been applied to pure informing situations, such as the en-
rollment decision made between alternative classes or the choice of a research topic. It 
can be characterized as client-recipient motivated informing, since it is the potential re-
cipient who actively decides which option to pursue. 

3. Tipping Point: Building upon assumptions presented in Gladwell’s (2000) widely read 
book The Tipping Point, this model is typical of general diffusion models (e.g., Rogers, 
2003) that examine how innovations—including ideas—migrate through communities. It 
could be characterized as a social-task model, since informing is motivated by both task 
performance-related criteria and by social criteria. 

In each case, a simple simulation was devised to examine the properties of the model. The goals 
of these simulations were to: 1) identify the parameters that each model requires, 2) identify char-
acteristic behaviors of the model, 3) determine model sensitivity to parameter choices, and 4) de-
termine the level of random volatility that each model produced. 

The most significant conclusions of the paper were that all the models exhibited the typical s-
curve of diffusion processes, signifying gradual early adoption, followed by rapid diffusion, fol-

lowed by a tailing off as maxi-
mum penetration is reached. 
They also all exhibited sensitiv-
ity to certain key parameters 
that could dramatically impact 
the ultimate level of informing 
penetration that could be ex-
pected. From a practical stand-
point, they all required values 
for a sufficiently large number 
of parameters so that applying 
the models to real world situa-
tions would likely be difficult. 
We are, therefore, probably lim-
ited to qualitative insights into 
typical system behaviors for the 
foreseeable future. Finally, all 
the models have specific do-
mains of applicability with re-
spect to: 1) whether the inform-
ing is driven by client-senders 
(individuals wishing to spread 
the information within the client 

 
Figure 2: Mapping model domains to who drives informing 
and message complexity (from Gill, 2008c). In general, the 
Tipping Point model seems most applicable to situations of 

high informing complexity. This does not imply that complex 
decisions cannot be impacted by other models (particular the 

Information Cascades model). Rather, it suggests that for 
such decisions—such as which political candidate to vote 

for—a client may decide to base the decision on what other 
people are doing, rather than on attempting the complex rea-

soning necessary to come up with an individual choice. 
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community) or client-receivers (individuals who want to acquire the information within the client 
community), and 2) the level of complexity of the information being conveyed. The most appro-
priate domains are summarized in Figure 8 (from the paper). 

The paper concludes by pointing out that the multi-client informing process is likely to be heavily 
impacted by the rapidly growing body of findings in the area of network theory and that combin-
ing network theory with our understanding of complex informing is likely to prove a fruitful re-
search domain in the future. 

Conclusions 
The variety of reference disciplines for Informing Science is great and remarkable.  It draws from 
research originally conducted in university departments whose research seemingly has nothing to 
do with one another.  It includes, to name a few, psychology, epidemiology, evolutionary biology, 
and philosophy. While information technology certainly has its important place in informing, the 
focus of the research presented here is with the clients’ needs and the characteristics of their 
tasks.  

The theory introduced here and in the following papers is distinctive in that it extends Informing 
Science with a focus on the task and its impact on the client.  The papers explore task complexity 
from a variety of epistemologies. It also extends beyond the basic Informing Science model with 
the introduction of client-to-client communications. The existing Informing Science model does 
not directly relate to such “informing”, yet we need to recognize the important role these proc-
esses can play. 

Clearly, there are many components to the Informing Science model and much more research that 
can be and is being done.  These papers make a solid and substantial contribution to Informing 
Science, particularly in exploring the complexity of the client/task interaction. The next big chal-
lenge for informing science is to unify these models with the large body of existing research that 
is built around technology-enabled informing systems. 
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